

Phospholipid Bilayers as soft Materials

Complexity in Biological & Soft Matter, CNLS Annual Meeting May 22, 2007

Atul N. Parikh University of California, Davis email: anparikh@ucdavis.edu http://parikh.ucdavis.edu

1

The Fluid-Mosaic-Model of the Biological membranes and Beyond...

4-6 nanometer thick 2-dimensional fluid heterogeneous Highly Dynamic

(Albert et al, Molecular Biology of the cell)

Self-Assembly of lipids and surfactants

Synthetic Membranes

(A. N. Parikh and J. T. Groves, MRS Bulletin, Editorial, 2006)

"Most membrane proteins do not enjoy the continuous unrestricted lateral diffusion....

Instead, proteins diffuse in a more complicated way that indicates considerable lateral heterogeneity in membrane structure, at least on a nanometer scale"

Jacobson, K., Sheets, E. D. & Simson, R. Science 268, 1441(1995)

Compartmentalizing Bilayer Fluidity

Supported membranes

Membrane Photolithography

C. K. Yee, M. L. Amweg, A. N. Parikh, Adv. Mater. (2004)

Membrane Photolithography

angstroms scale Height resolution by Imaging Ellipsometry

M. Howland, A. W. Szmodis, B. Sanii, A. N. Parikh, Biophys. J. 2007

Membrane Photolithography

C. K. Yee, M. L. Amweg, A. N. Parikh, Adv. Mater. (2004) C. K. Yee, M. L. Amweg, A. N. Parikh, J.Amer. Chem. Soc. (2004) A. W. Szmodis, M. Howland, B. Sanii. A. N. Parikh, Biophys. J (2007) Patent # 7,132,122 (2006)

Photochemistry of Membrane Photolithography

"Most membrane proteins do not enjoy the continuous unrestricted lateral diffusion.... Instead, proteins diffuse in a more complicated way that indicates considerable lateral heterogeneity in membrane structure, at least on a nanometer

Jacobson, K., Sheets, E. D. & Simson, R. (1995) Science 268, 1441

Femtosecond Bilayer Surgery at the Nanoscale

A. M. Smith, T. R. Huser, A. N. Parikh, J. Amer. Chem. Soc. (2007)

Femtosecond Bilayer Surgery at the Nanoscale

A. M. Smith, T. R. Huser, A. N. Parikh, J. Amer. Chem. Soc. (2007)

The edge pores, holes, and permeability

Dil behaviour near the edge of a DMPC bilayer

25-45 degree celcius

45-55 degree celcius

65-25 degree celcius

Melting FRAP spots via Heating

controlling compositions

studying lipid rafts?

Probing Membrane Heterogeniety and Dynamics using model bilayers

A Biophysical tool for Understanding Lipid heterogeneity

Designed reactive-diffusive fronts

Lipid-lipid interdiffusion, compositional manipulation Phase dynamics and stability Engineering arrested diffusion

Kinetically and chemically arrested Mixing for functional patterning

HAE Gm1

HL-60 CTB

Bilayers CTB

functional dynamics at cellular surfaces

Cellular apoptosis

Siegel Nature Reviews Immunology 6,308–317 (April 2006) | doi:10.1038/nri1809

Human Retina Pigment Epithelial Cells

Lincoln, Boling, Parikh, Yeh, Gilchrist, Morse IOVS, 2006

uninduced

Annexin V Alexa-488

Cell State	% of gated
Live	92.54%
Early Apoptotic	3.99%
Necrotic/Late Apoptotic	3.46%

Induced

Cell State	% of gated
Live	24.60%
Early Apoptotic	22.74%
Necrotic/Late Apoptotic	52.66%

5ng/mL Fas ligand for 24 hrs

Tert-butyl hydroperoxide

Chemical AIF

chemical reorganizations

Cellular apoptosis

HAEC 300.19 RPE HL-60 Native vesicles 2 micron pore-size polycarbonate membrane purchased o-ring syringe 0 0 D. teflon nclude o-ring ized filter upport Heating/cooling block

Fas receptor proteins are recruited to raft microenvironments following induction of apoptosis.

Raft formation is inhibited by depletion of cholesterol from RPE cell membranes.

Templating membranes Using Structured Surfaces

Surface energy patterns Using Self-Assembled Monolayers

(Howland, Butti, Dattelbaum, Shreve, Parikh, J. Amer. Chem. Soc. 2005)

Imaging Ellipsometry confirms single monolayer and Bilayer formation

Both Mono- and Bilayer exhibit typical long-range fluidity

The two membrane fluids are disconnected

Protein patterns within membrane moats (nanoscale dimensions using microscale masks)

56

Membrane morphologies are templated by the Patterns of surface energy

Howland et al, J. Amer. Chem. Soc., 2005

Asymmetric Distribution of Charged lipids

Negatively charged Texas-red and Gm1 lipids

membrane asymmetry

Cholera toxin (FITC-CTB) binding to 1% Gm1 containing POPC membrane patterns

2 to 2.5 times higher binding in the bilayer region

FITC-CTB fluorescence pattern

1 % Gm1 and 99% POPC

FITC-CTB fluorescence pattern

1 % Gm1, 1% Texas-red DHPE, 98% POP한

The contrast reversal suggests a significant enhancement Of Texas-red probe in the distal leaflet

Electrostatic considerations

Collaboration: Toby W. Allen

Collaboration: Toby W. Allen

Lipid spreading dynamics Surface energy patterns

spreading

the thickness of the spreading foot

69

Ellipsometric confirmation of the spreading membrane morphologies

spreading fronts are tense

Monolayer spreads faster than the bilayer both spread with square root of time kinetics

B. Sanii and A. N. Parikh, Soft Matter, in press (2007)

Bilayer Collisions

Corrugated surfaces

Acknowledgment

Dr. Chanel K. Yee, (now at Amgen) Dr. Annapoorna R. Butti (now at Purdue) Dr. Sanhita Dixit, (now at SRI, Palo Alto, CA) Dr. Madhuri Vinchurkar Dr. Ann Oliver

Michael Howland, Chemical Engineering Andreia Michelle Smith, Biophysics Daniel Bricarello, Applied Science Cristina Tcheyan, Applied Science Calvin Yang, Biomedical Engineering Eric Kendall, Chemical Engineering Alan Szmodis, Biophysics Ravi Butti, Applied Science Adrian Brozell, Applied Science Babak Sanii, Applied Science Rita El-Khouri, Chemistry Marie Boling, Mol. & Cell Biology Viviane Ngassam, Applied Science

Collaborators

Dr. Andy Shreve, Los Alamos Prof. Jay T. Groves, UC Berkeley Prof. C. Jeff Brinker, UNM and Sandia Prof. Thomas Huser, UC Davis Health System Dr. Darryl Sasaki, Sandia Prof. Yin Yeh, UC Davis Prof. Larry Morse, UC Davis Health Systems

Support DOE-BES | NSF-CBST| NIH (NHLBI) | NIH Nano medicine